第一论文网免费提供企业管理论文范文,企业管理论文格式模板下载

电气化铁路接触网防雷技术及措施浅析

  • 投稿BB姬
  • 更新时间2015-10-13
  • 阅读量523次
  • 评分4
  • 88
  • 0

王海杰

太原铁路局供电处山西太原030013

摘要院雷电在电气化铁路接触网设备运行危害严重,极易造成设备损坏绝缘破坏引发跳闸甚至中断供电故障,本文在对雷电机理、形成原因及分类研究的基础上,针对防止雷害的主要因素制定预防对策和技术措施,对电气化铁路的防雷探索和现场实施具有指导意义。

教育期刊网 http://www.jyqkw.com
关键词 院电气化铁路;接触网;防雷;措施

1 概述

电气化铁路在运输系统中逐渐承担起明显重要的作用,但接触网设备周边环境的变化和日常极端恶劣天气不断增多,接触网设备因雷击引发跳闸故障日渐频繁,给供电设备的安全运行埋下隐患。如何防治雷击引发的闪络造成接触网设备跳闸成为电气化铁路发展的重要部分之一。本文着重从雷电机理、形成原因进行分类研究的基础上,结合管内电气化接触网雷害故障的实际情况,针对防止雷害的主要因素预防对策和技术措施进行研究。

2 雷电产生的起源和过程

根据统计在我们生活的地球整体范围内,雷电生成的频率十分可观,随时地球上都约有两千多个地点正遭受雷暴,每秒钟地球就有上百次雷电,众所周知我们生活的地球是大电容体,空气中的水滴(或冰晶、雹粒等)在地球的大气电场中形成感应电荷,下端为正电荷、上端为负电荷,与大气中上升的负离子的电荷中和,使水滴带负电,形成雷(雨)云起电后的电荷分布。雷电放电实质上是一种超长气隙的火花放电,它所产生的雷电流高达数十、甚至数百千安,从而会引起巨大的电磁效应、机械效应和热效应。

猿雷电表现的方式和分类

雷电的形式分为枝状闪电、带状闪电、叉状闪电、片状闪电、球状闪电、联珠状闪电。

按空间位置分类。云闪:云内闪电和云际闪电(两片云之间)。地闪:俗称落地雷,是日常防雷主要研究对象。

接触网雷击主要分为直击雷击、感应雷击两种形式。直接雷击:雷云直接对接触网供电设备放电。感应雷击:雷云通过静电感应或电磁感应在接触网附近的支撑装置、接触悬挂、附加导线上产生感应电压。

4 接触网雷击具体案例

在我国电气化铁路接触网设备由于雷击造成的跳闸可达到30%-60%,而高速电气化铁路比率更高。高铁线路地处空旷地带,多采用高架桥方式,线路两侧高大建筑物少,因此对于雷电来讲目标比较突出。在强对流、雷暴天气高铁接触网受雷击跳闸情况比较突出。根据统计,仅2014 年我国全路34 条电气化铁路就发生设备雷击跳闸就达到1214 件,尤其是处于山区、桥梁等地形环境复杂的地区,雷击引发的跳闸故障率更高。

以管内开通的某高速铁路线路为例,此高速铁路长413.363km,全线正线采用AT 供电方式,联络线、动车走行线采用直接供电方式。自2014 年7 月1 日开通以来,共发生26 起雷击引起设备损坏的事故。占故障总跳闸的比例达57.7%。

其中典型案例有:

4.1 区间对向下锚正馈线烧伤(图1)

4.2 正馈线对向下锚处绝缘子闪络(图2)

4.3 区间对向下锚处正馈线对绝缘子放电(图3)

5 接触网雷击特点分析

5.1 按接触网雷击部位来看

从雷击接触网设备部位分类统计来看,对接触网附加线、支撑装置的平腕臂、斜腕臂绝缘子、站场软横跨承力索端部绝缘子、接触悬挂下锚绝缘子、避雷器等均发生过雷击闪络击穿,其中尤其是正馈线和斜腕臂绝缘子可占到雷击闪络的50%以上。

5.2 接触网结构方面分析

区间正馈线的安装高度在距离轨面10.3m 处,其下方2m 才是接触悬挂,在雷电面前正馈线相当于为接触悬挂起到了防护作用,雷击比例大大增加。站场软横跨横承力索端部绝缘子基本在13—15m 的位置处,处于最高的地方,也成为了雷击的首要对象。

5.3 从雷害后果分析

淤接触网绝缘子破碎、损伤。接触网防污式绝缘子的雷电冲击耐受电压水平悬式绝缘子为300kV、棒式绝缘子为270kV,但该绝缘水平只表现于新线建成的较短时间内。由于接触网安装高度低,周围污染因素多,随着运营时间的增长,绝缘子污染严重和老化导致绝缘水平不断降低,这也是接触网遭雷击后绝缘子常被击穿的主要原因。

于承力索断线、接触线烧损。无论直击或绕击,最终结果都是在接触网线索上形成超高过电压,由于不能及时泄流时就会烧损线索。

盂支柱顶帽裂损、肩架金具因电流烧损等。由于支柱高于接触网其它部分,所以更容易成为雷击首要部位,造成设备损坏。榆避雷器击穿等。由于避雷器的接地条件多样,而铁路接地随着运行时间增长条件恶劣,部分接地锈蚀严重加上铁路沿线地质环境因素,使得接地电阻较大,无法达到设计要求。感应雷击造成过电压后,避雷器的最大残压值大幅提高,可能会造成绝缘子闪络及击穿。

6 防雷现状情况分析

6.1 目前电力系统防雷策略及其技术对策

中国电力网采用的防治雷害措施是以对雷电加强监测为指导,电力系统构建雷电监测研究平台,实现了对雷电发生情况的实时监控。同时采取差异化的防雷手段,从而实现大力减少雷击的目的。电力系统输电线路防雷目标是提高线路的耐雷特性,降低线路的雷击跳闸率。电力系统在研究确定线路防雷方式时,综合考虑系统的运行方式、线路的电压等级、重要程度、线路经过地区的雷电活动的强弱、地形地貌特点、土壤电阻率高低等自然条件,根据技术经济比较的结果,采取合理的保护措施。

6.2 国内接触网防雷情况

接触网防雷装置主要由接闪器或避雷器、引下线和接地装置组成。淤接触网线路防雷的接闪器通常为避雷线方式。架设避雷线的目的是为了利用避雷线的屏蔽作用,保护下方的设备不受直接雷击,并和良好的接地装置配合,将雷电流迅速泄入大地,降低雷击引起的过电压。

于装设避雷器方式。路内接触网设备防雷均采用避雷器的方式,《铁路电力牵引供电设计规范》规定接触网避雷器的安装位置在:分相和站场端部绝缘锚段关节;长度2000m 及以上的隧道的两端;较长供电线或AF 线连接到接触网上的接线处;强雷区应架设独立的避雷线,接地电阻值10赘。

盂引下线是用于将雷电流从避雷线传导至接地装置或利用等电位连接降低反击过电压的导体。目前暂按通行做法,避雷线每隔800耀1000m 设置一处引下线。引下线的材质、结构和最小截面应满足雷电流强度检算并不小于避雷线的铜当量载流截面。

榆接地装置:接地体和接地线的总和,用于传导雷电流并将其流散入大地,同时降低反击电压。当接触网受到雷击过电压或操作过电压影响时,电流通过避雷器流入大地,造成避雷器接地极附近电位升高,如果接地电阻过大,会对接触网以及周边设备造成反击,引起变电所跳闸或烧坏信号与通信设备。

7 接触网防雷的措施和方案

结合管内电气化线路的具体运行情况和历年来雷害故障的情况,为充分防治雷害,需从以下几个方面完善接触网的防治方案。7.1 利用现有资源逐步构建丰富电气化铁路的雷电监测网络首先由路局、供电段、车间建成三级网络,积极争取电力、气象等部门现成的雷电定位资料,掌握管内电气化雷电数据和规律。为铁路沿线雷电活动监测、雷电预警、铁路雷电事故实时查询、事故调查、雷电数据挖掘和统计提供技术平台。

7.2 装设避雷线

架设避雷线是降低接触网雷击跳闸概率和避免绝缘子损坏最有效的措施之一,对处于多雷、高雷、强雷区的电气化线路,应结合线路条件以及雷电防护要求,以架设避雷线为主,一种是按折角法计算,避雷线增高肩架高度须在柱顶以上约2.5m(按45毅保护角考虑),一方面增高肩架尺寸和重量较大、在支柱上固定困难、施工安装难度大,另一方面对支柱的稳定性有较大的影响。

另一种是按滚球法计算,避雷线增高肩架高度须在柱顶以上约1m,对支柱稳定性影响较小,易于工程实施。架设避雷线后可引导雷电向避雷线放电,通过杆塔和接地装置将雷电流引入大地,从而使被保护的接触网设备免遭雷击。对于建设中或已开通线路,可逐年进行接触网防雷改造试验,实施增设避雷线功能的改造方案。

7.3 提高接触网整体接地水平

接地系统的好坏直接决定了防雷措施的效果,设计、施工部门要确保防雷接地装置的等效电阻值满足要求,运营管理单位应定期检查维护防雷设施、定期测量接地电阻等参数,发现问题及时处理。每年雨季前对管内接地装置进行一次全面摇测,测量接地电阻不满足要求的增加或更换接地极。对隔离开关、避雷器、架空地线处的单独接地极进行整治处理,重新埋设接地极,部分处所装设石墨接地极,以保证接地良好。

7.4 加强线路绝缘

防治雷害可采取增加线路绝缘的方法,主要办法一方面是增加接触网设备中复合绝缘子的应用,接触网下锚、分段、分相用绝缘子优先采用复合绝缘子,避免雷击绝缘子损坏造成严重后果。另一方面是增加绝缘子串中的片数、改用大爬距悬式绝缘子、增大塔头空气间距等等。为减小绝缘子绝缘性能降低带来的影响可加强绝缘清扫维护,每年进行2 次带电水冲洗和人工清扫,对污染严重的绝缘子随时进行清扫。

7.5 安装避雷器

安装避雷器(避雷针)是防雷的重要措施,在支柱接地电阻相同的情况下,安装避雷器可大大提高线路耐雷水平。当支柱接地电阻为30赘时,无避雷器时的线路耐雷水平为12kA,安装避雷器后,线路耐雷水平提高到24kA。确定避雷器的安装密度、防护范围、分流情况和失效条件是制定合适的接触网防雷措施的前提。运行中在雷雨季节到来之前,安排对管内避雷器进行避雷器预防性试验,对状态不良避雷装置及时安排更换,确保设备雷击状况下,防雷设施能够起到保护作用。

7.6 加强雷击跳闸分析

高度重视雷击跳闸放电点查找和故标分析修正工作,一是雷雨天气发生供电跳闸后,采取添乘动车组(机车)、栅栏外巡视等方式,及时组织人员对故标指示2km 范围内相关设备进行巡查,当日天窗点内停电检查,及时发现雷击对供电设备的损坏情况并及时采取更换绝缘子等措施,消除安全隐患。二是对故标等跳闸保护动作信息与巡查情况进行分析比对,及时修正故标参数,不断提高故标的准确性。

7.7 快速恢复供电

由于接触网正馈线位于接触网上方,极易遭受雷电侵袭,且发生故障后,故障查巡、处理时间长。所以在现场运行中可采取在牵引变电所内正馈线上加装隔离开关,当正馈线发生故障时,及时拉开隔离开关,将正馈线退出运行,由AT 供电方式改为直供方式,最大限度地压缩故障延时,快速恢复供电。

8 结语

接触网设备具有线长、露天、高电压、无备用等特点。在雷雨天气情况下,遭受雷电袭击的概率较大。加强接触网的防雷措施、提高接触网的耐雷强度是保障接触网设备安全运行及铁路运输畅通的一项重要措施。在运行实践中必须不断总结经验加以防治,从而确保运输安全。

教育期刊网 http://www.jyqkw.com
参考文献

[1]铁路电力牵引供电设计规范[S].TB10009-2005.

[2]建筑物防雷设计规范[S].GB50057-94.

[3]刘明光.论接触网上避雷器的应用[J].电气化铁道,2005(5).

[4]翟铁久.浅析牵引供电系统的防雷保护[J].铁道标准设计,2003(11).