第一论文网免费提供综合医学论文范文,综合医学论文格式模板下载

3S技术在赤峰市农业病虫害防治中的应用

  • 投稿终结
  • 更新时间2015-09-24
  • 阅读量901次
  • 评分4
  • 96
  • 0

周 龄

(赤峰学院 资源与环境科学学院,内蒙古 赤峰 024000)

摘 要:“3S”技术作为一种综合性技术手段,在农业病虫害防治的应用中取得了较大进展,它与地面调查资料的结合,对精准有效控制病虫害的曼延发挥了重要作用.赤峰市是农业病虫害发生频繁、危害严重的城市之一,因此本文结合病虫害发生的特点,阐述了“3S”技术应用于赤峰市农业病虫害防治中的概况,分析了病虫害防治研究中存在的问题,并提出了相应的解决方案,及其在农业病虫害应用研究的展望.

教育期刊网 http://www.jyqkw.com
关键词 :“3S”技术;农业病虫害;赤峰市;应用研究

中图分类号:S763文献标识码:A文章编号:1673-260X(2015)01-0078-03

近年来,“3S”技术在农业领域中应用广泛,人们不仅能够准确地辨别地面植被类型和环境情况,而且能够对人的活动范围和房屋建筑的分布进行动态观测,在自然界中“3S”技术与农业病虫害相结合在病虫害的预防和控制中可以起到空间决策作用,从而给人们提供了更加丰富有效的信息.长期以来,我国北方部分地区遭受到虫灾不同程度的威胁,赤峰市受到蝗灾威胁最为严重,人们愈来愈意识到必须对自己赖以生存的空间环境进行有计划的开发、保护与管理.农业资源的合理开发与利用,农业高效生产与病虫害的防治等研究更加受到广泛关注.

1 “3S”技术及其在病虫害监控领域的应用研究概况

1.1 “3S”技术简介

所谓“3S”技术,即地理信息系统(Geographic Information System,简称GIS),全球定位系统(Global Positioning System,简称gps)和遥感技术(Remote Sensing,简称RS)相互结合并相互独立发展起来的新兴学科.

1.1.1 地理信息系统(GIS)

地理信息系统是一种采集、存储、管理、分析、显示与应用整个或部分地球表面与空间和地理分布有关数据的计算机系统[1],是处理和分析海量数据的通用技术,它能够对空间及地球表面相关数据进行收集、分析、整理和描述,通过建立相应的模型,来解决较为复杂的问题,并能用直观方式的表现出来.

在病虫害预防控制领域,GIS系统能够直观、准确地将病虫害影响因素的空间分布呈现出来[2].它利用二维地面数据和三维空间数据,分析研究特定地理位置中影响病虫害分布的各类影响因子,并估计出各影响因子之间存在的相关性.

1.1.2 遥感技术(RS)

遥感技术是运用各种传感器获取地球表面信息,来研究地面物体大小、形状、位置、性质及环境相互关系[3].对于农业病虫害的防治工作,RS技术能够准确、快速的获取病虫害的种类及其相关影响因素的分布.

1.1.3 全球定位系统(GPS)

全球定位系统是一种高精度的全球三维实时导航的卫星导航系统[4],它利用空间导航卫星、地面监控站和用户设备等给用户提供各种不同精度的离线或在线的空间定位数据.

随着技“3S”技术的相互结合、相互渗透和快速发展,已经形成了3S集成化技术系统.GPS、RS、GIS集成应用在蝗虫的监控领域中已经取得了较好的发展,并在我国部分地区都有不同程度的应用.例如吉林省地方病研究所同北京台众思壮科技有限责任公司合作建设GPS工作站,将“3S”技术与蝗灾的专业信息有机的结合起来,同时利用GPS对蝗灾的分布信息进行准确定位.

1.2 “3S”技术在病虫害监控领域的应用研究概况

20世纪70年代初,“3S”技术逐步应用于农作物病虫害监控领域,经过多年的技术研究和野外实践,“3S”技术在病虫害的迁飞及爆发等方面取得了一些进展,尤其在蝗虫的动态监测方面呈现出美好的前景.这里以蝗虫为例,分析其在国内外的发展及应用现状.

1.2.1 “3S”技术在国外蝗虫监控领域的研究

20世纪90年代,“3S”技术在蝗灾的监控上取得了较快的发展.例如,20世纪90年代初期北非苏丹红海一带是非常有代表性的沙漠蝗虫繁殖地区之一,在沙漠蝗虫的生存环境方面利用GIS技术对相关调查数据进行入库、分析、整理并绘制出成图,并把遥感生存环境分类并绘制出成图跟其GIS绘制出的成图进行复合研究,从而获得此区域的“蝗虫繁殖区域分布图”[5].对于沙漠蝗虫的繁殖、迁徙和群聚的各种生存环境的可能性评价结果在图上都能准确的呈现出来,并将评价图用于有针对性的地面沙漠蝗虫防治的队伍中.联合国粮农组织和澳大利亚疫蝗委员会(APLC)开发的“沙漠蝗虫监测预警系统”和“澳大利亚蝗虫决策支持系统”,对澳大利亚沙漠蝗虫危害的有效控制起了关键性的作用.

由于GIS的空间数据处理功能格外突出,能够定点管理数据资料.因此将若干种蝗虫发生的预测结果及模型进行综合分析,以科学的手段对蝗虫种群的产卵分布、迁徙路径及发生发展预测分析,并将蝗虫防治和发生实况以图形形式显示,更能直观、精确的对蝗虫进行动态监测.另外,GPS能在经纬度上对蝗虫的调查数据资料自动定位,从而能够准确的在电子地图上呈现出田间蝗虫实时发生的状况.

1.2.2 “3S”技术在我国蝗虫监控领域的应用现状

随着中国农业生产方式的变革、生态环境和气候条件的变化,人们愈来愈意识到必须对自己赖以生存的空间环境进行有计划的开发、保护与管理,农业病虫害的预防和控制等研究更加受到人们的关注.

20世纪末,我国科学家开始从事“3S”技术在蝗虫监测领域方面上的研究.“稻纵卷叶螟的动态变化显示系统”由汪四水等人利用地理信息系统首先建立了起来,为我国在全国范围内建立病虫害预警监控系统奠定了坚实的基础[7].马建文、韩秀珍等人通过在野外持续观察和试验研究以及对卫星数据同时段的对比分析,提出了“遥感飞蝗生育过程监测”,分析在蝗虫的虫卵期、幼虫的生长期和成虫的迁移期三个不同阶段的遥感调查指标和监测特征数据,对蝗虫的发生进行动态监测[6].自1996年以来,南京师范大学倪绍祥教授利用“3S”技术在青海湖地区对草地蝗虫的发生、迁飞、预测模型、蝗群的变化规律、监测系统等层次做出了不懈的研究和探索[8].然而,从客观上来说这些研究只能说是初探,沙漠蝗虫和田间蝗虫在发生规律、种群分布、生态习性和预防与控制等方面都存在明显的差异, 因此,在蝗灾进行动态监测领域运用“3S”技术越来越能够显示出其独特的优越性.

2 赤峰市农业病虫害调查分析

2.1 农业病虫害防治中存在的问题

2.1.1 对预防工作不够重视

从对赤峰市调查分析中,我们了解到病虫害防治工作中“预防”是基础,关键是要做好病虫害的预测与预报工作.正确的预测与预报的关键是模型.田间实验调查数据和基础性研究是高质量模型的根本.在我国海量数据若不能形成一个统一、共享的平台,很难对数据进行共享,使得预防系统在研制中缺乏基础性数据,在客观上使得病虫害防治系统向先进水平发展的程度受到了限制[9].在以后的研究工作中,我们应该格外重视对基础性的研究.

2.1.2 使用“门槛”过高

在农业病虫害防治工作中“3S”技术使用者一般为专家、科技人员以及少数农民.赤峰市农民较多,而且文化水平相对低于农业科技工作者,对技术系统的操作有些困难.而“3S”技术作为一种综合性技术手段,可操作性强,在实践中“3S”技术经常是集成应用的,对硬件设备和软件要求比较高.因此,让农民熟练的使用“3S”技术,是农业病虫害防治工作中急需解决的一项问题.

2.1.3 没有对症下药

赤峰市部分农户为图方便省事,盲目的将几种农药混合在一起使用,急于对病虫进行防治.在某一时期把防治病虫害的农药全部用上,由于部分农药不适合混合使用,发生了化学反应结果造成农药使用效果下降,使得防治效果不理想造成浪费,有的甚至还会造成很严重的负面影响.在什么时期,有什么病虫害,该用什么药防治,都应遵循一定的规律.

目前,在农业病虫害防治工作中,人们逐步开始使用多媒体技术,将农业害虫的发生的区域特征、形态和在某一时期发生的症状形象的表现出来,并加以实况解说,使原本难以理解的推理变得简单、生动了起来,这为农民解决这一难题提供了有效的方法.

2.2 农业病虫害控制和治理的对策

由于蝗虫等病虫害引发的灾害是一种极其严重的自然灾害,一直以来其发生、监测及防治都受到我国政府的关注.下面以蝗虫为例,论述其主要控制对策.

根据赤峰市近年来的气候变化规律和蝗虫发生的动态变化关系的研究可知,全球气候变化,季节更替变化所引起的旱、涝灾害,都会引起蝗灾的发生,这将使频繁发生的沙漠飞蝗和田间蝗虫延续到21世纪末[10].

建立蝗虫区域性地理信息系统数据库的目的是为了减轻和控制蝗虫灾害,尽最大可能减少经济损失,运用“3S”技术全面分析和评价蝗虫发生区域的相关影响因子及其地理理特征分布情况,建立适合我国国情的蝗虫动态监测网络系统;设计遗传基因芯片,利用DNA芯片技术,辨别田间飞蝗散居型与群居型的两种不同类型的转变,用以监测蝗虫发生的动态变化[11];为了研究蝗虫灾害的中长期检测技术以及防治的适宜期,对不同地理区域内蝗虫的类别、数量、发生程度及发生期进行动态监测;运用蝗虫在不同空间尺度不同发育阶段的空间动态模型、成灾蝗虫的物候学模型、生存环境适宜性评价模型等,建立计算机预防控制模型,为蝗虫的发生、迁徙范围及蔓延趋势等作出准确预测提供了科学依据.

针对蝗虫的发生特点,要想长期对蝗灾进行综合治理和持续控制,不仅要依靠技术平台的监测与控制,还应该加强以下几方面的研究.

2.2.1 蝗虫灾害的发生规律

开展蝗虫持续控制和综合治理的前提是研究蝗虫的发生规律及其成灾原因.主要从蝗虫发生的空间位置、种群数量随时间推移的变化规律以及与环境关键因子的关系;蝗灾的地理分布规律;蝗虫暴发成灾的动态与人类生产活动的关系;及不同的气候条件对蝗虫的发生动态、蝗虫发生地的环境变化与生态条件的影响等内容的研究.

2.2.2 蝗虫灾害的综合治理

从生态学角度,对蝗虫灾害进行有效控制.生态学控制技术,是根据不同的蝗虫发生区域(沿海区域、滨湖区域、河泛区域、草原区域等)的结构、功能及其景观特征提出来的,包括天敌的保护、农业产业结构调节、植被恢复、水位调控、合理放牧、物种多样性保护、资源的合理开发与利用.通过宏观调控,充分发挥生态学控制技术,控制其种群数量在经济指标之下,避免其暴发成灾.

从化学角度,对蝗灾进行有效控制.为了控制突发性蝗灾的发生,应使用高效安全的化学农药新试剂和新品种.例如使用一些自主研发的氨基甲酸酯、溴氰菊酯、虫酰肼和氟虫脲、锐劲特等.

从经济学角度,对蝗虫的监控进行分析.研究蝗虫灾害指标体系;成灾蝗虫的防治指标;生态系统中不同种类蝗虫对其它组分在经济生产中的产生的影响;逐渐形成适合我国的经济阈值体系和治蝗决策体系.

3 “3S”技术在农业病虫害中的应用前景展望

随着“3S”技术的不断发展,它在农业病虫害监控领域内的应用范围和深度都将得到拓展和深化.未来的研究主要表现在以下几个方面:

3.1 开展蝗虫生存环境特征与遥感图像特征关系的分析

在蝗虫监测方面使用遥感图像,利用图像特征去监测蝗虫的发生区域特征、繁育环境及生存条件是其主要途径.因此,若要摸清蝗虫的生存环境特征与种群的繁殖与发生之间的关系,就要充分发挥遥感技术在蝗虫监控领域中的作用.从客观上说,这种关系是极其复杂的,而且模式一般不固定,是因地而异的.例如,加拿大艾伯塔省的草地蝗虫的暴发密集程度与降水量的多少呈负相关关系,但北非地区的沙漠蝗虫则相反,草地蝗虫的密度降低的地区降雨量一般都超过其平均值,这与我国青海湖周边的一些地区的情形相差不多[12].此外,研究蝗虫的密度与生存环境之间的关系,还须考虑到蝗虫产卵、孵化、成熟等不同生活阶段,因为在这些不同生活阶段,蝗卵或蝗虫的数量变化与生境类型的关系也是有一定差别的.从总体上说,尽可能采用时间分辨率相对较高的遥感图像(如NOAA/AVHRR)对蝗虫进行动态监测,并对地面环境展开详细调查,这样对蝗虫进行动态监测才有可能实现.

3.2 加强GIS技术在蝗虫监测中应用的研究

GIS技术可将蝗虫生存环境特征数据与遥感数据资料及历史蝗虫灾害数据进行综合分析和集成,显示出其在这个领域的应用潜力.未来发展应将GIS作为蝗虫防治决策支持系统的组成部分,充分加强其在这一领域的实用性.因此,GIS不仅可用于对蝗虫生存环境数据资料、历史蝗虫灾害数据及与其有关的记录进行综合分析,而且还可以与蝗虫防治有关的数据进行整合,为其提供决策支持.目前,国际上正在开发新型GIS系统即智能地理信息系统,并把它作为预防蝗虫暴发的决策支持系统.此外,基础数据的标准化与规范化进一步加强了其在病虫害监控领域的作用.同时,应亟待探讨“结构化”的数据参数收集方法,使GIS系统更方便分析和处理病虫害的历史数据和实况资料及各类生存环境记录.

3.3 利用“3S”技术与农业专家系统相结合,对病虫害进行动态监测分析

专家系统是运用计算机技术和人工智能技术,在某一领域内对一个或多个专家提供的技能、知识和经验,分析、推理和判断,模拟专家的决策过程,是一个拥有大量的专业知识与经验的程序系统[14].它对农作物在同一时期不同环境条件下出现的各种症状进行诊断,并分析其可能出现的病虫灾害,提出相应的防治方案.

通过与专家系统结合,能够即时反应出病虫害的发生动态,并能反映出专家系统对其的预测性.GIS技术与专家系统结合,对病虫害发生的动态能够准确描述,从而使监测结果更生动、直观且接近实际.建立动态数据库,可以对各地区病虫害监测的数据库进行及时的更新,同时系统的共享性问题得到了有效解决,极大的提高了人类的工作效率.

4 结语

“3S”技术在农业病虫害防治领域中的应用,为农业病虫害防治工作带来了深远的影响.面对技术方面存在的问题,赤峰市应该结合实际情况,努力研究自身不足之处,充分发挥“3S”技术独有的特点,增强防灾救灾能力.由于用“3S”技术精确定位,用药集中,极大地增加了农产品的产量,进一步提高了社会效益、经济效益和生态效益,为国民经济可持续发展提供了保障.

教育期刊网 http://www.jyqkw.com
参考文献

〔1〕陈述彭.地理信息系统导论[M].北京科学出版社,2000.

〔2〕唐群峰.地理信息系统在农业土地上的应用[J].华南热带农业大学学报,2006(2).

〔3〕张建宏.3S技术在鼠疫疫源地研究中的应用进展[J].浙江预防医学,2011(6).

〔4〕李秋荣.基于SUKF方法在组合导航系统中的应用研究[J].哈尔滨工程大学,2008.

〔5〕倪绍祥.遥感与GIS在蝗虫灾害防治研究中的应用进展[J].南京师范大学地理科学学院,2000(2).

〔6〕冯晓东.3S技术在蝗虫监控领域的应用概况[J].全国农业技术推广服务中心,2009(4).

〔7〕郑宇鸣.GIS在农业病虫害信息管理中的应用[J].农机化研究,2011(7).

〔8〕韩秀珍.遥感与GIS在东亚飞蝗灾害研究中的应用[J].地理研究,2003(2).

〔9〕严智燕.植物病虫害防治中农业专家系统的研究进展[J].中国农学通报,2005(5).

〔10〕王正军.我国蝗虫爆发成灾的现状及其持续控制对策[J].昆虫知识,2002(3).

〔11〕刘彦琦.草原蝗灾成因及机械防治[J].新疆农机化,2004(1).

〔12〕江道辉.基于遥感的农作物病虫害监测方法研究[J].中国农业科学院,2007.

〔13〕THE OPERATION OF A GIS-BASED DECISION SUPPORT SYSTEM FOR AUSTRALIAN LOCUST MANAGEMENT [J].Ted Deveson and David Hunter.2002.

〔14〕魏葆春.人工智能的现状与未来的发展方向[J].边疆经济与文化,2010(12).